

FACULTY OF MANAGEMENT SCIENCES

DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

QUALIFICATION: BACHELOR OF TECHNOLOGY IN ECONOMICS		
QUALIFICATION CODE: 12BECO	LEVEL: 7	
COURSE CODE: AME311S	COURSE NAME: APPLIED MATHEMATICAL ECONOMICS	
SESSION: JULY 2019	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

SUPPLEME	NTARY/ SECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	
	MR EDEN TATE SHIPANGA
MODERATOR:	PROF T. SUNDE

INSTRUCTIONS		
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

- 1. PEN,
- 2. PENCIL
- 3. CALCULATOR

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1 [25 Marks]

Consider the following microeconomic model.

Where Y_0 is income and T_0 is the tax on the commodity.

Analyse the comparative statics of the model to find the effect of change in Income and Tax on the equilibrium Q and P?

25 marks

Question 2 [25 Marks]

1. Use the Jacobian to test for functional dependence in the following system of equations

$$y_1 = 6x_1 + 4x_2$$
$$y_2 = 7x_1 + 9x_2$$

5 marks

2. Maximize utility u = xy + x, subject to the budget constraint 6x + 2y = 110 by a) finding the critical values \bar{x} , \bar{y} and $\bar{\lambda}$, b) use the Hessian bordered.

Question 3 [25 Marks]

In a three—industry economy, it is known that industry I uses 20 cents of its own product, 10 cents of commodity III and 60 cents of commodity II to produce a dollar's worth of commodity I. Industry II uses 10 cents of its own product, 30 cents of commodity III and 50 cents of commodity I to produce a dollar's worth of commodity II. While industry III uses none of its own product and commodity I; but uses 20 cents of commodity II in producing a dollar's worth of commodity III. The open sector demands N\$ 1,000 billion of commodity I, N\$ 2,000 billion of commodity II and 500 billion of commodity III

- a) Write out the input matrix, and the specific input matrix equation for this economy. 10 marks
- b) Find the solution output levels by Cramer's rule. 15 marks

Question 4 [25 Marks]

1. Given the marginal propensity to consume $C'(Y) = 8 + 0.1Y^{1/2}$ and information that C = Y when Y = 100, find the consumption function C(Y).

10 marks

2. Evaluate the following

a)
$$\int_0^4 \left(\frac{1}{1+3x} + 2x\right) dx \text{ where } x \neq -1$$

$$\int_0^4 (2x^3 - 1)^2 (6x^2) dx.$$

15 marks

Total

[100 marks]